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Abstract. Histograms of oriented gradients (HOG) are widely employed
image descriptors in modern computer-aided diagnosis systems. Built upon
a set of local, robust statistics of low-level image gradients, HOG features are
usually computed on raw intensity images. In this paper, we explore a learned
image transformation scheme for producing higher-level inputs to HOG.
Leveraging semantic object boundary cues, our methods compute data-driven
image feature maps via a supervised boundary detector. Compared with the
raw image map, boundary cues offer mid-level, more object-specific visual
responses that can be suited for subsequent HOG encoding. We validate
integrations of several image transformation maps with an application of
computer-aided detection of lymph nodes on thoracoabdominal CT images.
Our experiments demonstrate that semantic boundary cues based HOG
descriptors complement and enrich the raw intensity alone. We observe an
overall system with substantially improved results (∼78% versus 60% recall
at 3 FP/volume for two target regions). The proposed system also moderately
outperforms the state-of-the-art deep convolutional neural network (CNN)
system in the mediastinum region, without relying on data augmentation
and requiring significantly fewer training samples.

1 Introduction

Quantitative assessment of lymph nodes (LNs) is routine in the daily radiological
workflow. When measuring greater than 10 mm in short-axis diameter on an axial
computed tomography (CT) slice, LNs are generally considered clinically relevant or
actionable [13], indicative of diseases such as lung cancer, lymphoma, or inflammation.
Manual detection of enlarged LNs, critical to determining disease progression and
treatment response, is a time-consuming and error-prone process. Thus, there has
been active research in recent years to develop accurate computer-aided lymph
node detection (CADe) systems. A challenging object class for recognition, LNs
exhibit substantial variation in appearance/location/pose as well as low contrast with
surrounding anatomy on CT scans. Recent work on LN CADe has varied according
to the feature types and learning algorithms used for training. [1,8] utilize direct 3D
information from CT scans, performing boosting-based feature selection over a pool of
50–60 thousand 3DHaar wavelet features. Due to the curse of dimensionality (analyzed
in [14]), such approaches can result in systems with limited sensitivity (e.g. 60.9% at
6.1 FP/scan for mediastinal LNs in [8]). Circumventing 3D feature computation during
LN classification, [14] implements a shallow hierarchy of linear models operating on 2D
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slices or views of LN candidate volumes of interest (VOIs) with histograms of oriented
gradients (HOG) [3] features. Also using 2D (or 2.5D) views, the state-of-the-art
performance is reported by [12] via a 5-layer, deep convolutional neural network (70%
and 83% sensitivity at 3 FP/scan for mediastinal and abdominal LNs respectively).

In computer vision, edge detection serves as a valuable component in object
detection tasks. Originally developed for use with natural images, the state-of-the-art
edge detection methods [5,9] exploit the typical structures found in small edge patches
such as straight lines and Y-junctions. [5] treats edge detection as a structured learning
problem, using a random forest to predict a local edge annotation for each extracted
patch from input images. While also using a random forest, [9] instead develops
a multi-class classification approach, first clustering patches of ground truth edge
annotations to define distinct classes of contours and then attempting to predict the
cluster membership of input patches. In this work, our core hypothesis is that we can
leverage the output response of semantic LN contour detection (built upon [9]) as
mid-level object boundary maps, serving as enhanced input for HOG computation.
By linking LN contour detection with LN detection itself, our proposed system will
improve as the accuracy of state-of-the-art object contour detection methods improves.

Operating on 2D views (orthogonally sampled slices) of LN candidate volumes of
interest (VOIs), our proposed method utilizes radiologist-annotated LN boundaries to
first cluster small patches centered on LN boundaries into distinct contour classes. We
then train a random forest [2] to classify the contour class membership of extracted
LN candidate patches using sketch tokens [9]. Hybrid, mid-level feature maps are
constructed by taking the per-voxel sums and maximums of the resulting contour
class probabilities. In this manner, HOG is computed both on hybrid feature maps,
which contain enhanced semantic objectness cues, and the CT intensity channel. A
mixture-of-templates model (separate templates for modeling LNs of different size
ranges) is efficiently implemented via a linear SVM, and the resulting 2D view con-
fidence scores are averaged to obtain candidate-level classifications. Our experiments
demonstrate that our new method leads to substantially improved performance over
intensity-based HOG alone [14] and outperforms the state-of-the-art deep CNN sys-
tem [12] on mediastinal LN detection, e.g. 78% vs. 70% recall at 3 FP/scan evaluated
on the same benchmark data set. Our empirical study shows that HOG, when coupled
with enriched hybrid image feature maps, can surprisingly be as effective as deep
CNN. To the best of our knowledge, leveraging semantic object-label boundary cues
for computer-aided diagnosis has not been previously studied.

2 Methods

Our lymph node detection system assumes we have a set of LN candidates generated
within each target region. To facilitate benchmarking, we employ the publicly available
LN detection datasets [12,14]. There are 90 CT scans with ∼1,000/3,200 true/false
positive (TP/FP) mediastinal LNs and 86 scans with∼1,000/3,500 TP/FP abdominal
LNs. Multiple TPs may correspond to the same LN. We also follow the view sampling
procedure from [14]. For each generated candidate V , we extract 2D views or slices
{vi} of size 45×45 voxels, sufficient to cover the size of most LNs with additional
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spatial context. Sampling at 0, 1, 2, 3, and 4 voxels away from the candidate centroid
bi-directionally in each of the three orthogonal coordinate planes (axial, coronal, and
sagittal) yields 27 views {vi} per V . To label the views, we simply transfer the label
of V to each vi: +1 if located inside any LN ground truth segmentation, -1 otherwise.

Defining Lymph Node Contour Classes. Computing our hybrid image
feature maps (which will serve as input to HOG) begins with developing a lymph
node contour detection system. To this end, we adapt the recent work on sketch
tokens [9] to our CT imaging domain. However, in contrast to that work, where the
objective is to detect the contours of any object category in natural images, we aim
to identify semantic LN boundary contours. The substantial variation of LN shapes
implies a wide spectrum of boundary contour appearances. Seeking to capture this
wide distribution, we first cluster local LN edge patches into distinct sketch token
contour classes. The CT scans in each target region’s dataset were examined by a
board-certified radiologist1, who manually segmented any enlarged LNs encountered.
Thus for each 2D slice of a CT scan, we have corresponding ground truth tracings of
any LN boundaries present (Fig. 1).

Fig. 1. Manual annotation of four abdominal lymph nodes on an axial CT slice.

After VOI decomposition of every LN candidate into 2D views of size 45×45 voxels,
we have a corresponding set of binary images {S} delineating the manually labeled LN
boundaries. Following the notation of [9], we extract patches s of size 15×15 voxels
from the images ∈{S}. A patch si is extracted if its center voxel is labeled as LN
boundary. Approximately 1.7 million such patches are extracted in the training folds
during our cross-validation experiments. Daisy descriptors [16] are then computed to
compensate for subtle shifts in the manual boundary label placements across CT slices.
Next, we perform k-means clustering on the Daisy descriptors, leading to k=150 sketch
token classes. Fig. 2 displays example patch cluster means for contours from LNs and
colon polyps [15] (shown for comparison). Large variation in the sketch tokens is evident
across LNs as well as colon polyps, a smaller-sized object class. Clustering-based
labeling attempts to assign LN boundary patches into k classes for better detection.

Contour Detection. After defining the LN contour classes, we aim to detect
their presence on candidate LN 2D views. Training labels for 15×15 patches are
assigned as follows: If centered on a boundary pixel, patches are labeled according to

1 The LN 3D segmentation mask datasets will be made publicly available. Visit
http://www.ariseff.com/ for info.
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Fig. 2. Examples of sketch tokens learned from the manual tracings by radiologists for
mediastinal LNs (left), abdominal LNs (middle), and colon polyps (right).

Fig. 3. (a) CT 2D View, (b) gradient transform, (c) SumMap, and (d) MaxMap (scaled for
illustration), for a true mediastinal LN candidate. Note how the simple gradient transform
(b) does not delineate the boundaries of the LN as strongly as the SumMap (c) derived
from the supervisedly learned mid-level contour detection.

their sketch token cluster membership (out of k choices); otherwise, they are labeled
as negative. Similarly to [9], we compute multiple feature channels per patch [4].
These include 3 gradient magnitude channels using Gaussian blurs of σ = 0, 1.5
and 5 pixels and 8 oriented gradient channels. Because CT images are grayscale, we
refrain from computing the CIE-LUV color space channels which would be relevant
for natural images. Self-similarity features, useful for detecting texture-based contours,
are computed on each gradient channel over a 5×5 grid leading to

(
5·5
2

)
=300 features

per channel. Thus, for a 15×15 patch, we have 15·15·11=2475 channel features and
300·11=3300 self-similarity features for a total of 5775 features per patch.

We train a random forest, an efficient method for multi-class classification, to detect
the k+1 LN contour classes [2]. Randomly sampling 1,000 patches per positive sketch
token class and 2 negative patches per training image provides a decent balance be-
tween positive and negative training samples for each decision tree. 25 trees are trained
whose leaf nodes denote the probability of a patch belonging to each class. Each tree
uses a randomly selected subset of size

√
F from F total available features for training.

Classification Using Boundary Input for HOG. A set of k sketch token
class probability values are evaluated at every pixel for each 2D CT view. We
construct the following mid-level, semantic representations as subsequent input for
HOG computation. The first representation we compute is the sum of the sketch
token probabilities at each pixel in an image. Such a map can be interpreted as
the total positive probability of each pixel residing on a true lymph node boundary.
We also compute a map representing the maximum sketch token probability at
each pixel because any true boundary pixel should fit well into at least one of
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the 150 contour classes (the reason for clustering positives into k=150 classes in
a “divide and conquer” manner). Letting tij denote the probability that a patch
centered at pixel i belongs to a particular contour class j, and ti0 the probability of the
negative background class, we derive the following two boundary probability cue maps:
SumMapi =

∑k
j=1tij = 1− ti0; MaxMapi =max1≤j≤k tij where k is the number

of sketch token classes. Fig. 3 shows these learned feature maps for a mediastinal
LN candidate. Compared to a simple image gradient transform, SumMap more
accurately highlights the LN’s boundary.

Fig. 4. A large abdominal lymph node
that the single template model misses,
but the mixture model detects. Larger
LNs are especially clinically relevant.

HOG can now be computed on each de-
rived feature map in addition to the raw
intensity CT image. The HOG descriptor
divides an input image into square cells and
delineates the quantized distribution of local
intensity gradient magnitudes and orienta-
tions for each cell. 31 features are calculated
per cell [7], which are then normalized within
blocks of adjacent cells. Using the same pa-
rameters as [14], the 45×45-pixel 2D views
are divided into square 5×5-pixel cells, yield-
ing 25 cells and 25 · 31 = 775 features for
each map. We test various concatenations of
these feature sets in Sec. 3 for performance
evaluation. For robust linear classification
(non-linear kernels exhibit poor generaliza-
tion with limited datasets), we train an L2-
regularized, L2-loss linear SVM [6], treating each 2D view as an independent instance
and averaging their confidence scores to obtain the candidate-level predictions.

Mixture-of-Templates Model by Size Gating. Enlarged LNs can vary
greatly in size, reaching as large as 55 mm in short-axis diameter in the abdominal
LN dataset. Although increasingly rare above 20 mm, very large LNs are especially
clinically relevant. Thus it is crucial that LN CADe accurately identifies them. A
single template of “HOG + Hybrid input” approach (modeling all LNs of varying
sizes) will favor the detection of moderately enlarged LNs which are more common.
Fig. 4 shows a typical large abdominal LN missed by a single template approach.
Addressing this imbalance in the training/testing datasets, we extend our model by
training two classifiers via a variation of size gating [11]. With a 15 mm size threshold
(calibrated as the median ground truth LN size), one classifier is trained using all
positives linked to LNs ≥15 mm and another is trained with the rest. The negative
candidate set does not change. In testing, confidence scores output by each size-gated
SVM are first scaled according to the corresponding range of training scores, making
the classifiers’ scores more comparable. For any instance, the mixture-of-templates
model then reassigns the maximum of the two scaled scores as its final confidence.
No LN size information is required in testing.
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Fig. 5. Performance comparison of LN detection models trained on the seven integrated
feature sets. For example, “Sum Max I” indicates the model trained on concatenated
HOG(SumMap), HOG(MaxMap) and HOG(Intensity) features. Six-fold cross-validation
FROC curves are shown for both the mediastinal (left) and abdominal (right) target regions.

3 Evaluation & Discussion

Data & Protocol. To facilitate comparisons with other work, we evaluate our
methods on the publicly available lymph node CT datasets used by [12,14]. There
are 90 patients with 389 mediastinal LNs, and 86 patients with 595 abdominal LNs.
We train and test models for each target region separately. Performing a six-fold
cross-validation for the combined LN contour detection/LN detection system, we
randomly split each group of patients into 6 disjoint sets. For each fold, models
are trained on five sets and and tested on the remaining set. Training the contour
detection random forest (trees are parallelized) and subsequent linear SVM for a
single fold takes ∼40 minutes. Testing on a single patient scan, including 2D view
sampling and feature computation (not counting candidate generation), takes less
than 5 seconds.

Performance. The three feature sets, HOG(SumMap), HOG(MaxMap) and
HOG(Intensity), are evaluated as single template models using all seven possible
feature set integrations (Fig. 5) with the free-response operating characteristic (FROC).
All six feature integrations that include at least one boundary cue map outperform
HOG on raw intensity alone, in the full range of the FROC curves. The top performing
integrations at low FP rates, Sum Max for the mediastinum and Sum Max I for
the abdomen, exhibit 24%–39% greater recall than the baseline HOG (e.g. 78%
versus 63% at 3 FP/scan for mediastinal LNs; 78% versus 56% at 3 FP/scan for
abdominal LNs). Furthermore, this performance is comparable to the state-of-the-art
deep learning results [12], moderately outperforming in the mediastinum while only
slightly lower for the abdomen. In detail, comparing with [12], we achieve sensitivities
of 78% vs. 70% at 3 FP/scan and 88% vs. 84% at 6 FP/scan in the mediastinum,
and sensitivities of 78% vs. 83% at 3 FP/scan and 89% vs. 90% at 6 FP/scan in
the abdomen. The mixture-of-templates models are also evaluated using the top
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performing feature sets calibrated from the single template models. Fig. 6 shows
the improvement in large malignant LN detection when the mixture model is used
in the abdomen, e.g., 94% vs. 78% sensitivity at 6 FP/scan for LNs > 20 mm.
We observe similar performance improvement for large mediastinal LNs when the
mixture-of-templates model is employed.

Discussion. The proposed method significantly outperforms the recent work
using HOG with a CT intensity map alone [14] which clearly demonstrates the
merits of utilizing semantic object-level boundary cues for automated LN detection.
This improvement is at the cost of annotated LN segmentation, required only at
training and not in testing. The sketch tokens object boundary detector [9] is very
robust and generalizable at a 15×15-pixel patch scale. The more recent structured
forest edge detector [5] can be exploited as well. Comparing with the state-of-the-
art deep CNN representation [12], our overall system is also a multi-layer pipeline
with comparable/moderately better FROC curves in abdominal/mediastinal LN
detection, respectively. The dense pixel-level semantic object boundary response map
is especially critical for the performance gain over [12,14], but is non-trivial for a
deep CNN, trained for direct LN recognition, to implement. CNNs are still mostly
decision/classification models. While the newest fully convolutional neural networks
can compute the output class support probability map, it is at a coarse (10−20×
downsampled) spatial resolution [10] (thus not sufficient in our scenario). Instead we
plan to investigate the feasibility of using our multi-channel hybrid image feature
maps for direct CNN training as future work.

4 Conclusion

We propose a novel method to leverage hybrid image feature maps based on mid-
level object boundary cues for computer-aided lymph node detection. The learned
maps can be used in place of or in addition to raw CT intensity images as input
to HOG feature computation. Evaluation of our approach for LN detection in two
target regions demonstrates that the mid-level information supplied by the new
representations both enhances and complements typical intensity-based HOG for this
complex object recognition task. Our method achieves substantially improved results
over baseline HOG systems [14] and moderately outperforms the state-of-the-art deep
CNN system [12] in mediastinal LN detection.
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